Transient receptor potential-like channels are essential for calcium signaling and fluid transport in a Drosophila epithelium.
نویسندگان
چکیده
Calcium signaling is an important mediator of neuropeptide-stimulated fluid transport by Drosophila Malpighian (renal) tubules. We demonstrate the first epithelial role, in vivo, for members of the TRP family of calcium channels. RT-PCR revealed expression of trp, trpl, and trpgamma in tubules. Use of antipeptide polyclonal antibodies for TRP, TRPL, and TRPgamma showed expression of all three channels in type 1 (principal) cells in the tubule main segment. Neuropeptide (CAP(2b))-stimulated fluid transport rates were significantly reduced in tubules from the trpl(302) mutant and the trpl;trp double mutant, trpl(302);trp(343). However, a trp null, trp(343), had no impact on stimulated fluid transport. Measurement of cytosolic calcium concentrations ([Ca(2+)](i)) in tubule principal cells using an aequorin transgene in trp and trpl mutants showed a reduction in calcium responses in trpl(302). Western blotting of tubule preparations from trp and trpl mutants revealed a correlation between TRPL levels and CAP(2b)-stimulated fluid transport and calcium signaling. Rescue of trpl(302) with a trpl transgene under heat-shock control resulted in a stimulated fluid transport phenotype that was indistinguishable from wild-type tubules. Furthermore, restoration of normal stimulated rates of fluid transport by rescue of trpl(302) was not compromised by introduction of the trp null, trp(343). Thus, in an epithelial context, TRPL is sufficient for wild-type responses. Finally, a scaffolding component of the TRPL/TRP-signaling complex, INAD, is not expressed in tubules, suggesting that inaD is not essential for TRPL/TRP function in Drosophila tubules.
منابع مشابه
Model organisms: new insights into ion channel and transporter function. L-type calcium channels regulate epithelial fluid transport in Drosophila melanogaster.
The neuropeptide CAP2b stimulates fluid transport obligatorily via calcium entry, nitric oxide, and cGMP in Drosophila melanogaster Malpighian (renal) tubules. We have shown by RT-PCR that the Drosophila L-type calcium channel alpha1-subunit genes Dmca1D and Dmca1A (nbA) are both expressed in tubules. CAP2b-stimulated fluid transport and cytosolic calcium concentration ([Ca2+]i) increases are i...
متن کاملManganese and iron transport across pulmonary epithelium.
Pathways mediating pulmonary metal uptake remain unknown. Because absorption of iron and manganese could involve similar mechanisms, transferrin (Tf) and transferrin receptor (TfR) expression in rat lungs was examined. Tf mRNA was detected in bronchial epithelium, type II alveolar cells, macrophages, and bronchus-associated lymphoid tissue (BALT). Tf protein levels in lung and bronchoalveolar l...
متن کاملOrganellar calcium signalling mechanisms in Drosophila epithelial function.
Calcium signalling and calcium homeostasis are essential for life. Studies of calcium signalling thus constitute a major proportion of research in the life sciences, although the majority of these studies are based in cell lines or isolated cells. Epithelial cells and tissues are essential in the regulation of critical physiological processes, including fluid transport; and so the modulation of...
متن کاملSimulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملSimulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 169 3 شماره
صفحات -
تاریخ انتشار 2005